

Long-term performance and carbon emissions associated to tunneling

Tarcisio Celestino **ITA President**

Buenos Aires, 8 Sep. 2017

Outline

- Carbon emissions of road tunnels
- Example of vehicle operation economy emissions and \$
- Improvement of carbon emissions in tunnel construction: the role of sprayed concrete
- Long-term accidents in tunnels
- Long term monitoring of tunnel behavior
- Final remarks

Carbon emissions of road tunnels

Lifetime assessment of Norwegian road tunnels (Huang et al., 2013)

- 67 m² cross section
- Rock
- 100 years lifetime
- 1280 kWh / (m.year) for lighting, ventilation, pumps, monitoring

CO₂eq emissions due to construction

- 6.5 tons / 1m tunnel
- Energy: 9%
- Transportation of materials: 15%
- Concrete: 42%
- Diesel for construction machines: 8%
- Explosives: 4.8%
- Others ...

Total emissions during lifetime (100 yr, t/m)

• Construction: 6.5

• Operation: 4.55

• Maintenance: 1.95

Example of vehicle operation economy – emissions and \$

Example of emissions evaluation Tunnel versus at-grade solution

- Example: SP 55 highway
- Between Maresias and Boiçucanga beaches
- Evaluation last 40 years
- Assumptions from Huang et al. (2013)

Cost of no-tunnel solution for roads SP 55 Road, Northern Coast, State of São Paulo

Maresias-Boiçucanga section

SP-55 — Maresias-Boiçucanga

- Straight line distance: 4.2 km
- At-grade road: 6.4 km
- Maximum elevation: 320 m
- Gradient: 6%
- Average daily traffic: 12,325 vehic./dia

Construction, operation and maintenance CO₂eq emissions

1 – Tunnel

• Construction: 6.5*4230 27495 t

• Operation: 4.55*4230*0.4 7700 t

• Maintenance: 1.95*4230*0.4 3300 t

38500 t

2 – At grade

- Construction:
- Operation:
- Maintenance:

Economy of vehicle emissions in 40 years if tunnel existed

 At surface: cars 12323*65%*6420*365*40*(consumption class G) trucks 12323*35%*6420*365*40*(consumption class G) Tunnel 12323*65%*4230*365*40*(consumption class A)

cars

12323*35%*4230*365*40*(consumption class A) trucks

Economy with tunnel in 40 years: 470000 t CO,eq

Vehicle operational cost

Tunnel vs at-grade road

- Total additional distance traveld per year: 11.5 million km
- 288 turns around the world

Additional vehicle operating cost:

US\$ 1,42 billion

in the last 40 years

Additional costs of at-grade road

- Accidents
- Pavement maintenace
- Landslides
- Etc.

Sprayed concrete Lower emissions and costs

Paulo Afonso IV power house

Total excavation span: 32.6m Total excavation span: 26.0m

Single-shell lining in Germany Single track tunnels (*Pöttler & Klapperich*, 2001)

Year	1981-83	1982	1984-87	1987-89
Ground	S/M	S/M	M	С
Pressure (bar)	0.5	0.5	0.5	0.6
Thickness (cm)	37	25	39	40

<u>Year</u>	1987-89	1989-90	1990-92	1991
Ground	С	M	M	G/M
Pressure (bar)	0.6	0	1.2	0
Thickness (cm)	25	40	30	35

C – claystone M – marl	S - sandstone
------------------------	---------------

Comments by Pöttler & Klapperich, 2001

- 10 15% savings due to single shell concept
- Scattered considerations about load on the second layer:

full load to partial load

□ Different design philosophy → even more significant savings

Single-shell lining in São Paulo Single track tunnels

Year: since 1981

Ground: stiff clay with water-bearing sand layers

Pressure: 0.5 to 2.0 bar

Total thickness: 20 to 25 cm

Shotcrete lining for the São Paulo Subway

São Paulo Ring Road 200 m2 4 lanes 86,000 vehic/day

2

TUNNELS AND SHAFTS

Rio de Janeiro Metro - Arcoverde Station

2

TUNNELS AND SHAFTS

Stockholm Metro

Shotcrete Supported Shafts José Eusébio Shaft, São Paulo Line 4

José Eusébio Shaft

São Paulo Metro Luz Station Shaft

3D simulation

SMUTI™ – evolution of strength with degree of hydration

Thermal scanning

Measured and evaluated compressive strengths

Long-term accidents in tunnels

Two examples

Guandu Tunnel

- Water supply to Rio de Janeiro
- Constructed in the early 1960s
- Decrease of water flow
- Inspection: major collapse in fault zone
- Swelling clay
- Similar problems in tunnels of the Cantareira water supply system,
 São Paulo
- Contributions by Selmer-Olsen

Hanekleiv road tunnel, Norway Christmas 2006

Hanekleiv Tunnel Mao et al. (2015)

- Collapse 10 years after completion
- Fault zone in syenite
- Q = 0.01 0.02 (extremely poor)
- Fault gouge 5-10 cm thick, low content of swelling clay

Hanekleiv Tunnel Mao *et al.* (2015)

- 15 cm of steel fiber reinforced spayed concrete
- Cracks during construction
- Additional 10 cm sprayed concrete before cladding
- Collapse: 250 m3
- One large block (several tons); mainly small blocks, gravel and fragments of altered syenite
- Conclusion: insufficient support

Collapse Koyamano Road Tunnel, Japan Inokuma (1990)

Construção: Março 1967 (Conclusão)

Acidente : 04/02/1990

Tunnel dimensions: B = 8,50m H = 6,05m

Overburden: 20m

Lining: 30cm Concrete

Daily traffic: 15.700 Vehic/Day

Ground mass: Sandy silt

Warning: Cracks and water one day before

Probable cause: Seepage, carrying solids

Voids: Load increase

Long term monitoring of tunnels

Examples of tunnels in Tertiary stiff clays and sands

Placas e Tassometros - S3-11

Settlements along 4.5 years Jaciporã Tunnel, Line 2, São Paulo Metro

Curve fitting Burger's viscoelastic model

RECALQUES DAS PLACAS

Evolution of surface settlement trough

RECALQUES DOS TASSÔMETROS

Evolution of deep settlement trough

Final remarks

- Emissions during tunnel construction and operations are not large.
- Concrete represents a large amount
- Sprayed concrete lining largely reduces emissions (and cost)
- Emissions and vehicle operational cost due to tunnels is remarkable
- Long-term accidents are rare; need for low-cost and feasible monitoring

Thank you!